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Abstract
A significantly improved two-dimensional
finite difference time domain (FDTD) method is
proposed for the full-wave analysis of guided wave

structures. By using a phase shift BAz along the z-
direction (propagation direction), and assuming the
limiting case of Az, the propagation constant of hybrid
modes can be calculated by using a two-dimensional
mesh with a truly two-dimensional grid size. Secondly,
by appropriately arranging variables, only a real
impulse response is involved. Furthermore, a new
grading scheme is introduced allowing a gradually
non-equidistant mesh in three dimension.

Introduction

Memory space requirements and computational
efficiency are major problems in the use of the FDTD
method. To alleviate some of the problem, a modified
FDTD approach was introduced recently [1-4]. In this
approach only a two-dimensional mesh consisting of a
3D space grid along the z-direction was necessary for
hybrid mode analysis of guided wave structures. This
mesh could also be regard as one slice out of a 3D
mesh, with the third dimension, the propagation
direction, being replaced by introducing a phase shift

BAz. The resultant space grid was only half of its

normal size (Fig.1a). As a result, the convergence rate
was much faster than in the conventional (3D FDTD)
approach and the required memory space was also
reduced significantly. Subsequently, other authors
followed this idea [4-7].

To take our approach one step further, in this
paper we propose to reduce the mesh size in
propagation direction to the limiting case of zero. This
results in a truly 2-D grid as shown in Fig. 1b and a
significantly improved convergence rate. Furthermore,
due to an appropriate coordinate transformation, we
are able to achieve a real impulse response, which is a

CH3277-1/93/0000-04215$01.00 © 1993 IEEE

significant improvement of our original approach,
because now all variable used in the computation are
real instead of complex numbers. This makes the
algorithm computationally very efficient.

Furthermore, we introduce a new scheme which
allows us to use a graded mesh in 3 dimensions and
maintaining a second order accuracy. This feature is
very attractive for the FDTD method because a non-
uniform mesh allows the resolution of highly
localized fields at circuit corners without reducing the
accuracy of the scheme. A number of papers have been
published before on this subject, such as [8) and [9]. The
major problem was always that changing the size of
neighboring lattices continuously and simultaneously
(with arbitrary mesh ratios) in all three space directions
introduces a first order error term [10]. To overcome
this problem, this paper introduces two techniques in
which the second order accuracy can be maintained.
One method uses a special mesh arrangement (valid
only for certain mesh ratios) without changing the
algorithm for the uniform mesh arrangement. The
other method uses a universal grading scheme with
continously variable lattice size in all three space
dimensions.

Theory
As shown in [3, 4], a phase shift exp{-jBz]} is
involved at any adjacent nodes for any specific
propagation constant . This modal knowledge is used
to simplify the scheme. It is easy to see that any
incident or reflected impulse for any propagation

constant P satisfies

E;, E;, H} ={E;(x.y), E;(x.), H}(x,y)}jexp{F Bz} (12)
He HY, EY = {H{(x,Y), Hy(x,y), Ej(x,y)}exp{F Bz} (1b)

Where the factor j in (la) is introduced in order to
obtain a real-variable impulse process. The value of
this step will become apparent in the following. In [3]
and [4] it was assumed that the discretization size Az in
the propagation direction was of finite value. This led
to the half grid size shown in Fig. 1a and (5) in [3].
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However it is not necessary to keep Az finite. Instead,
when Az approaches zero, the limiting case for the
discretized Maxwell’s equations for x-direction field
components yields:

HR03, jy= HF %5 - %{[E;‘a,j +1)- E3 (i, )1/ Ay - BEG (i, J)}

EZ(, )= EXGL )+ % [HEOS (1 + 1) = HE*OS(1, 1))/ Ay
HBH @ADL (g

Where At , Ax, and Ay are, respectively, the time
step and the space steps in the x- and y-direction. The
central finite difference scheme has been used to
discretize the space along the x- and y-directions as well
as the time axis t.

From the above equations, it is obvious that now
only a two-dimensional process is involved with a
truly 2-D grid size as shown in Fig.l1b. Another
important point here is that now all quantities in (2)
are real numbers because of the variable
transformation by a factor of j in (1). The condition of
stability of the new scheme is found to be

VpAt < 1/‘\‘Ax_2 + Ayvz (3)

Graded Lattice
The problem of first order error in the variable

lattice scheme can be illustrated by looking into the
expression for the Ex-field at the boundary for two
neighboring lattices as an example:

ne oy e At OHT (i, j k) OHIT (i, j k)
Ex(l,‘],k)—Ex(l,‘],k)‘f“*e:[ ax - 32 ]

@
Developing the x-dependent term in this equation by a
Taylor series yields:

OH:™" (i, j,k) _ H**>(i, j + Lk)— H:""* (i, ,k)
ox Ah(qi +qj+1)12

+o((q,+1 ~q;)Ah) &)

which clearly shows that normally a variable grading
scheme provides only first order accuracy.

To obtain second order accuracy without
changing the uniform FDTD scheme the lattices have
to be arranged in a certain ratio. Without loss of
generality, let us first consider only the one
dimensional case as an example, shown in Fig.2. The
FDTD algorithm on the left and right side of point D in
Fig. 2 obviously keeps a second order accuracy since the
central finite differences are maintained. The problem
is that calculating the electric field component at point
D from the magnetic field components at points C and
E inevitably leads to a first order accuracy because
central finite differences are not maintained. This
follows also from equ. (5). But, interestingly enough, a
second order accuracy can be obtained if the magnetic

422

field components at point A and E are used for the
calculation of the electric field component at point D
instead of the magnetic field components at point C
and E. An appropriate mesh ratio between left and
right sides is used (Fig. 2) in order to cancel the first
order errors. The points A, C, and E are so chosen that
the point D is in the middle of point C and point E.
This means that the neighboring mesh ratios are
selected as r=3:1. The advantage of this improvement
is that it does not change the uniform mesh algorithm.
The limitation of this scheme is that an appropriate
mesh ratio must be satisfied to obtain the central finite
differences. Other examples for lattice size ratios which
can be realized are r=1:5=0.2, 1/r=3:5, and, 1/r=7:5=14,
respectively.

For non-integer lattice ratios the second order
error can only be obtained by combining the three
neighboring lattice cells. Considering an arbitrary
variable lattice as shown in Fig. 3, the mesh parameters
pi (i=1,2,...M), gj (j=1,2,...N), and rk (k=1,2,... K) are any
positive real numbers as required to resolve the

specific structure. s=cAt/Ah, At and Ah are, respectively,
the time and the space steps. If pj=constant (i=1,2,...,.M),
gj=constant (=1,2,...,N) and rk =constant (k=1,2,...,.K),
the variable lattice will be reduced to a cubic one. If all
mesh parameters along the x-, y-, and z-direction are
set to unity, the lattice will be a uniform cube. Once
again, the one dimensional case is treated as an
example without loss of generality. The three
dimensional case may be easily derived from the one-
dimensional case. The electric field components can be
always arranged in the middle of the magnetic field
components or vice versa. Therefore, calculating the
electric (or magnetic) field components from the
magnetic (or electric) field components leads to a
second order accuracy since a central finite difference is
maintained. However, on the boundary between the
variable grading lattices the E-field (point D in Fig.2) is
not located exactly in the middle between C and E and
therefore calculating the E-field from the H-field leads
to a first vorder error. This again follows from equ.(5).
The important thing is that a compensation factor can
always be found to cancel the first order error terms
and therefore a second order accuracy can be obtained.
This is demonstrated in the following.

If we use the central finite difference schemes to
calculate the electric field components from the
magnetic field components, it is obvious that the
electric field components are at the electric field nodes
shown in Fig. 3, and a Taylor’s series analysis yields
JE;" (i)

o ©®
The first order partial differential term in the above
equations may be expressed by using the first order
partial differential expansion at the electric nodes as
follows

E(i)=E(i)+ A +o(h?)



OEy" (i) _ 9Ex(i) | s 3°Ex(i) 2

ax = ax + 6: axz + O(h ) (7)
and therefore, equ. (6) can be written as
Ey(i)=E;"(i)+A,[E’(i+1);E’(i"1)]+o(h2) ®

where, 1j (i=1, 2,...,N) is time independent and fixed for

a specific mesh arrangement. The compensation terms .

in the bracket of the right side of the equ.(8) have been
calculated in the neighboring equations and therefore
the new algorithm requires not much more
computations. From equ. (8), it is clear that a variable
mesh scheme with arbitrary lattice ratio and a second
order accuracy is feasible by combining neighboring
mesh field components. Similarly for other field
components, a second order accuracy may be obtained
through a compensation factor. This idea can be
extended to all three dimensions.

Numerical Result

To compare the accuracy of the new scheme
with results obtained from other methods, the
following comparison is made. Fig. 4 shows the
dispersion diagram for a unilateral finline in
comparison with results obtained from the method of
lines (MoL) and the modified FDTD. Fig. 5 and Fig. 6
demonstrate the frequency dependent dielectric
constant of a multiconductor stripline and a suspended
substrate coplanar line, respectively, in comparison
with [13] and [12]. The CPU-time required is from a few
seconds to a few minutes, depending on the structure,
on a SPARC II workstation.

Fig. 7 shows the return loss for a low-pass filter
analyzed with the variable lattice method introduced
in this paper. A comparison between experimental
results, uniform lattice size and variable lattice sizes
with ratio 1/r=3:1 and r=1:2 is given in this figure. The
uniform mesh layout requires 160x100x32 cells with

Ax=0.2032mm, Ay=0.4233mm and Az=0.265mm. The
computation time on a IBM Risk 6000 is around 4
hours. The variable mesh with ratio 1:2 starting from
the metal edges required a CPU-time of 20 minutes,
while the ratio of 1:3 required a CPU-time of 18
minutes. The ratio of 1:2 utilized 100x92x10 cells. In
terms of the accuracy, the uniform mesh ratio and the
ratio of 1:2 provided the best comparison to the
measured data. However, the latter one was much
faster and consumed much less memory.

Conclusion
A 2-D full-wave FDTD algorithm with only a
real impulse response has been introduced. Using a
truly 2-D grid the memory space and CPU-time of the
FDTD has been further reduced. For 3D analysis in the
time and frequency-domain a new variable mesh
techniques has been introduced to enhance the FDTD
efficiency sigificantly. Measured and computed results
have shown excellent agreement.
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Fig.1a A novel 2-D FDTD mesh
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Fig.1b A modified FDTD mesh with a truly 2-D grid.
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Fig.4 Modified FDTD results compared with the MoL and
FDTD for a finline, WR-28 waveguide, hp=3.556 mm,
d=0.254 mm, &=2.22, f=34 GHz.
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Fig.6 Dispersion in a shielded CPW analyzed by the FDTD and
[12], &=3.75, b=2h=3.22mm, b’=2.22mm, h’=0.805,
d=0.154mm, t=0.005.
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Fig.5 Effective dielectric constant of a three-conductor stripline

versus h/Ao, &r1=€r3=9.7, £=4.0, w/h=1.0, s/h=0.1 [13].
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Fig.7 Numerical results of various grading schemes compared to
measurements; b=2.54mm, w=2.413mm, h=0.794mm,
a=5.65mm, L=20.32mm.



